#: locale=en ## Tour ### Description tour.description = Virtual tour ### Title tour.name = Louvain Bionics ## Skin ### Button Button_7DBCA382_7065_343F_41DB_48D975E3D9EC.label = Louvain Bionics Button_7DBCA382_7065_343F_41DB_48D975E3D9EC_mobile.label = Louvain Bionics Button_930A1BFE_DC9B_561D_41E5_9F83EB07A523.label = Neurological diseases Button_9E60A789_BF74_CC54_4195_FDD694FEA581.label = Neurorehabilitation Button_9E60A789_BF74_CC54_4195_FDD694FEA581_mobile.label = Neurorehabilitation Button_9E61578A_BF74_CC54_41D0_C54E5933CA42.label = Perception Button_9E61578A_BF74_CC54_41D0_C54E5933CA42_mobile.label = Perception Button_9E61C78C_BF74_CC6C_41D5_5413C0B6EFC7.label = Artificial intelligence Button_9E61C78C_BF74_CC6C_41D5_5413C0B6EFC7_mobile.label = Artificial intelligence Button_9E674786_BF74_CC5C_41BB_6474239E3CB2.label = Home Button_9E674786_BF74_CC5C_41BB_6474239E3CB2_mobile.label = Home Button_9E67E788_BF74_CC54_41D0_56F2C1A46A69.label = Robotics & Biomechanics Button_9E67E788_BF74_CC54_41D0_56F2C1A46A69_mobile.label = Robotics & Biomechanics Button_A13F5A1A_E5B3_5AB3_41E3_D9673EC454A3_mobile.label = BACK Button_AD5882A7_E5CD_2B91_4174_30ACD06DB75A_mobile.label = Technical facilities Button_AD6ECF9D_E5CD_39B1_41D2_01C8A9FF0524_mobile.label = Biomedical ethics and law Button_BEB3F774_DD69_5E2D_41E1_C410259EFEA1_mobile.label = Neurological diseases Button_D62F58AE_E57D_6793_41DF_E106F5358067.label = Biomedical ethics and law Button_D6754C76_E57D_7F73_41DF_5EBA2AC9BDB2.label = Technical facilities Button_F01877F7_C7BF_4BBD_41BB_741602CF73DC.label = Back ### Tooltip Button_7DBCA382_7065_343F_41DB_48D975E3D9EC.toolTip = UCLouvain's hub for medical device+human research and innovation Button_7DBCA382_7065_343F_41DB_48D975E3D9EC_mobile.toolTip = UCLouvain's hub for medical device+human research and innovation IconButton_8CB3CBDF_9784_D2BF_41A9_5A3883B85A19.toolTip = Louvain Bionics ## Media ### Title album_074828E1_609D_72EC_41D4_04EA4E78F700.label = Cognitive Neuropsychology Laboratory album_195184B2_6083_716C_41B2_E9C6423B5B95.label = PiLab neuroimaging album_195184B2_6083_716C_41B2_E9C6423B5B95_0.label = PiLab neuroimaging album_195184B2_6083_716C_41B2_E9C6423B5B95_1.label = PiLab neuroimaging album_195184B2_6083_716C_41B2_E9C6423B5B95_2.label = PiLab neuroimaging album_195184B2_6083_716C_41B2_E9C6423B5B95_3.label = PiLab neuroimaging album_4EDEEC24_5CC5_F038_41CC_BC1191E9FC36.label = Motion analysis Lab album_4EDEEC24_5CC5_F038_41CC_BC1191E9FC36_0.label = Motion analysis Lab album_4EDEEC24_5CC5_F038_41CC_BC1191E9FC36_1.label = Motion analysis Lab album_5240FC74_608F_91D4_41CA_1CDB0CF47137.label = NSMK Publications album_5240FC74_608F_91D4_41CA_1CDB0CF47137_0.label = Research Team album_5240FC74_608F_91D4_41CA_1CDB0CF47137_1.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_2.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_3.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_4.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_5.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_6.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_7.label = NSMK Publication album_5240FC74_608F_91D4_41CA_1CDB0CF47137_8.label = NSMK Publication album_7548D878_6A35_5294_41C0_B07E7464FBE6.label = Presentation VR OpenHub album_7548D878_6A35_5294_41C0_B07E7464FBE6_0.label = Presentation VR OpenHub album_7548D878_6A35_5294_41C0_B07E7464FBE6_1.label = Presentation VR OpenHub album_7548D878_6A35_5294_41C0_B07E7464FBE6_2.label = Presentation VR OpenHub album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A.label = Several techniques album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_0.label = Neuroimaging Platform album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_1.label = Brain Morphometry, Cortical Thickness and Curvature album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_2.label = Voxel-based Bayesian Lesion-Symptom Mapping album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_3.label = Resting State and Functional Activation album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_4.label = Diffusion Imaging and Myelin Mapping album_7694CCC2_6A75_33F4_41BE_D9EF9550B73A_5.label = Spectroscopy and Functional Spectroscopy album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_0.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_1.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_2.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_3.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_4.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_5.label = Robot with pneumatic artificial muscles album_7944A5C8_5B94_9A3F_41CC_A43D85CDEE8E_6.label = Robot with pneumatic artificial muscles album_79C07702_6A33_DE74_41B1_403A5AD0D403.label = Other prototyping facilities album_79C07702_6A33_DE74_41B1_403A5AD0D403_0.label = Mechanical workshop album_79C07702_6A33_DE74_41B1_403A5AD0D403_1.label = Parts with complex shapes made by CNC machining album_79C07702_6A33_DE74_41B1_403A5AD0D403_2.label = CNC milling machine for plates and woodworking equipment album_79C07702_6A33_DE74_41B1_403A5AD0D403_3.label = Metrology equipment album_79C07702_6A33_DE74_41B1_403A5AD0D403_4.label = Welding equipment (e.g. MIG, TIG) (© Jacky Delorme) album_79F0199B_6A35_3594_41D6_F2DB49E54CA5.label = Examples of protoypes album_79F0199B_6A35_3594_41D6_F2DB49E54CA5_0.label = EVOLAP robotic laparoscope holder for minimally invasive surgery album_79F0199B_6A35_3594_41D6_F2DB49E54CA5_1.label = ASTEMA robotic system for microsurgery assistance with adaptive scaling album_79F0199B_6A35_3594_41D6_F2DB49E54CA5_2.label = Prototype of 3D-printed active orthosis for assistance to hip flexion (collaboreation with Rehazenter, Luxemburg - © Yvan Flamant) album_79F0199B_6A35_3594_41D6_F2DB49E54CA5_3.label = CAD rendering of upper-limb rehabilitation robot using pneumatic artificial muscles (collaboration with LAAS, Toulouse) album_79F0199B_6A35_3594_41D6_F2DB49E54CA5_4.label = Machine for quantitative assessment of wrist passive stiffness album_7B4B9387_69D3_567C_41CB_D254C87E46F7.label = Examples of 3D-printed parts album_7B4B9387_69D3_567C_41CB_D254C87E46F7_0.label = Various parts of complex shapes with different materials album_7B4B9387_69D3_567C_41CB_D254C87E46F7_1.label = FDM additive manufacturing with continuous fiber reinforcement (fiberglass, Kevlar, carbon) album_7B4B9387_69D3_567C_41CB_D254C87E46F7_2.label = Biocompatible and sterilizable parts for CPAP breathing assistance album_7B4B9387_69D3_567C_41CB_D254C87E46F7_3.label = Prototype of cable-driven flexible finger for hand prosthesis panorama_245589E2_3D7D_CB91_41AA_61B46D32B981.label = Artificial intelligence panorama_24BDEAAE_3D7C_C991_41A3_07ACE2358DB8.label = Motor learning / NeuroRehab panorama_530FB963_40CA_0EDB_41CB_EEBA848F0665.label = Magnetic Resonance Imaging room panorama_5310E408_40CA_0655_41CA_4058BDF84816.label = Biomedical ethics and law panorama_531FBF02_40C6_0255_41B8_702A84EBE647.label = Multi-sensory psychophysical room panorama_532571E2_40DA_01D5_41CC_380B126A8898.label = EEG room - Cognitive neuroscience panorama_5334EC8E_40CE_066D_41A7_ECAAD0993B1A.label = Virtual reality lab - OpenHub panorama_533D306A_40C6_FED5_41AD_4194E7219230.label = Neurological diseases panorama_5349EA5D_40C6_02EF_41B2_F096E7461C21.label = Psy-naps group panorama_534B114F_40DA_3EEB_4197_FBC13281A782.label = Sensorimotor control lab (2) panorama_534B859D_40DA_066F_41C2_62A611ACF40D.label = Walking lab & pediatrics rehab. panorama_53766664_40DA_02DD_41C5_685741FB660E.label = Neurorehabilitation research group panorama_537FB6FF_40FA_03AB_41CF_94BE6E2E76DC.label = Robotics lab panorama_54AA165C_40DA_02ED_41B6_59FDB604BA2E.label = Human neurophysiology panorama_54D67F7E_40FA_02AD_41C5_59ED0122C98A.label = Home panorama_55D9A2C8_40C6_03D5_41A0_7144ED3B6C3A.label = Sensorimotor control lab (1) panorama_78E8C0E4_69CF_33BC_41BB_FD631D12A7D5.label = Design and prototyping photo_7EEF2CF0_5F8F_92EC_41C3_D1261A52F7AE.label = MRI photo_800717F5_A9E0_F4F8_4198_A20E264DD537.label = Cognitive Neuropsychology Laboratory photo_800717F5_A9E0_F4F8_4198_A20E264DD537.label = Cognitive Neuropsychology Laboratory photo_8DD3686F_A9A0_3BE8_41C5_9684A48495DC.label = 1_2_People LB_V2 photo_8E51DB05_A9E0_FD18_41C4_2AB441C20A94.label = Cognitive Neuropsychology Laboratory photo_8E51DB05_A9E0_FD18_41C4_2AB441C20A94.label = Cognitive Neuropsychology Laboratory photo_9A42CBBA_A9A0_1D68_41D3_B12DFA084061.label = Diapositive1 photo_EED8D084_607D_9134_41CE_60C21DFCD6EF.label = Mulders video_2000FCF9_3D6F_4973_41AB_C6C663B1F3AF.label = Yannick Bleyenheuft video_200FA140_3D55_D891_41C7_E79DCE1F48CE.label = Laurence Dricot video_204F433D_3D54_F8F3_41CA_881486F60F07.label = Bernard Hanseeuw video_2066519F_3D57_DBAF_41C1_DFC206355283.label = Christophe Lazaro video_2094C358_3D73_38B1_41BC_6FA763BB9F5B.label = Renaud Ronsse video_20A09475_3D75_3973_41B8_EE467FF191EF.label = Camille Chatelle video_21C5D86B_3D54_C897_41C9_6A2CC46397AF.label = Olivier Collignon (2) video_21D0D8C5_3D53_C993_41C6_D1B452FA9327.label = André Mouraux video_21D4C124_3D55_5891_41B7_0B9A73D2E2D6.label = Martin Edwards video_21E65B00_3D6C_C891_41B9_DC38DF867E42.label = Sensorimotor Control Lab (1) video_21F35285_3D55_5993_41C2_DC2C4BBEE08C.label = Victorien Sonneville video_21F84222_3D6D_3891_41CB_7D1B18B2412D.label = Thierry Lejeune video_222F0C41_6182_912C_41D7_0AACF6EDC184.label = Sensorimotor Control Lab (2b) video_2751649B_619F_715C_41D3_F18E4F9AF9AE.label = Sensorimotor Control Lab (2) video_7859DCF3_69CD_5394_41D9_D44727BF4AD1.label = Benoît Herman ## Popup ### Body htmlText_089855A0_609D_936C_4186_EA80205100DE.html =
Lab website
htmlText_102D1317_60FD_9754_41CF_C7DABFACA6ED.html =


htmlText_1340CDB3_6082_936C_41D0_8C20A7F7ED93.html =


htmlText_15EC7787_60FD_7F34_41D7_56787A580382.html =


htmlText_22A8AAC9_6183_913C_41A9_D382FD6D2E18.html =
Manual dexterity enables a wide variety of hand functions and movements, which are controlled by a complex sensorimotor system (brain, spinal cord, peripheral nerves). The DEXTRAIN® tool evaluates manual dexterity through a standardised visuomotor task. The tool consists of 5 sensors which are connected to pistons (one for each finger), and which measure and record the forces applied. It allows the quantification of several variables such as the ability to move the fingers independently, the control of the force of each finger, the maximum force of the hand, temporal aspects such as sequences or rhythmic movements. Manual dexterity is often affected in neurological, psychiatric and musculoskeletal pathologies (e.g. stroke). This device can be coupled with the REAplan® robot which explores / rehabilitates the proximal part of the upper limb, and with other measures.
htmlText_24392EF4_3CED_4971_41B4_48FDFB5E332C.html =


htmlText_24458E7A_3CED_4971_41C6_7D0BBD519682.html =
From an ethical and legal viewpoint, it is crucial to address the tension raised by the use of prosthetics or so-called enhancement technologies: how to conciliate the individual transformation and emancipation through technologies with the collective principles of equality and merit at the core of certain social practices (e.g., Pistorius case illustrated here) ? (Christophe Lazaro)
Photo credit (Oscar Pistorius) : This work is licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License
htmlText_2446CE79_3CED_4973_4193_8EE945BE7CDD.html =
The emergence of complex prosthetic technologies changes our representations of the body and nurture people’s belief in the possibility to enhance human capacities beyond species normal functioning. Prosthetics and assistive technologies are then no longer conceived merely as devices for repairing or replacing the functions of a “disabled” body, but as vectors for redesigning the "normal" human body according to particular needs and desires, by modifying it or creating new capacities for action and perception and, more generally, by increasing its performance.
htmlText_247D656F_3CED_5B6F_41B7_92151C51A4AF.html =


htmlText_24866F47_3CEC_C89F_41AB_3ED23B9C9033.html =
Lab website
htmlText_24890F45_3CEC_C893_4198_F6283D1E362B.html =
A fundamental challenge in neuroscience consists in understanding how the brain processes sensory stimuli. A sensory stimulus applied to an individual is first transduced through dedicated receptors before being encoded with action potentials and finally conveyed toward the cortex. Artificial intelligence, including machine learning and signal processing, can be used to study the links between the activity of complex neuronal networks and the human perception of external events from different modalities (such as vision, audition, touch, ...). In particular, periodic pain-related (e.g. cool and warm) stimuli can elicit periodic responses in neuronal populations responding to the stimuli, which can be studied despite the large amount of noise in recorded brain signals.
htmlText_24AC472D_3CED_3893_41B8_8DC16BF18084.html =


htmlText_24ACF72F_3CED_38EF_41C8_079A8C7F9E43.html =


htmlText_24D0C380_3CEC_DF91_41B7_22F298A643DB.html =


htmlText_2582FEA2_3CEF_4991_41C0_BB4FC5D0902E.html =


htmlText_25D1A56F_3CED_5B6F_41CC_4EF991088A0A.html =


htmlText_25D2D56E_3CED_5891_41C7_CEC845502C0D.html =
Lab website
htmlText_2D8BD809_6183_B13C_41C3_3E241F556383.html =
Lab website
htmlText_3C7BB6F4_6187_9ED4_4190_66525D3C7212.html =
Lab website
htmlText_3E19DDDA_6183_72DC_4181_B4DEB6E0FDB7.html =
Lab website
htmlText_48A3EFE1_5D46_5038_41BC_444090155C2A.html =
HABIT-ILE : Hand-arm Bimanual Intensive Therapy Including Lower Extremities
This intervention, developed in our lab, is based on the principles of motor skill learning.
It considers the difficulties of each child as well as their age and interests.
By having a “child-friendly” approach, we are able to improve their motor development but also daily life activities that normally are challenging or difficult to be performed by the child.
Lab website
htmlText_4B2EDA31_5F8E_B16C_41CF_202F889528BF.html =
Lab website
htmlText_4C92E928_607E_937C_41CA_23D7ED4E8A8C.html =


htmlText_4DB3AA7E_5F87_91D4_41C5_226FECAEA215.html =
Lab website
htmlText_50A53B7F_6085_97D4_41CA_C0F1BE809A23.html =
Lab website
htmlText_6B0699B4_5AAC_AA57_41D6_CD5F90A6FFD1.html =
The test bench is driving the joint axis of the prosthesis in order to simulate gait cycles experimentally. Under controlled conditions, the device enables to characterize and to test the different versions of the prosthesis ELSA.
htmlText_6BBBDB4E_5AAC_AE33_41C8_5903DEC94987.html =
ELSA is a compliant bionic ankle that can restore mobility to trans-tibial amputees.
htmlText_729BB5D5_7F4E_9B1F_41CA_067DC618289F.html =


htmlText_734141EB_6A55_F5B4_41C2_01B5BF2E9659.html =


htmlText_7405C44B_5AAC_7A31_4195_EE08E6FE69AE.html =
Vision based systems for terrain detection play important roles in mobile robotics, and recently such systems emerged for locomotion assistance of disabled people. This video shows a pilot test result of such system which has been developed by Louvain Bionics team. The system can estimate the upcoming terrains type for three steps in advance. We assigned specific color for each terrain type : ground (green points); down ramp (purple points); up ramp (red points); up stairs (blue points); downstairs (yellow points).
htmlText_7586F321_627C_9F3C_41A8_4151307C3DDE.html =


htmlText_76E252A3_6A4F_57B4_4184_33F33E74E430.html =


htmlText_7731608F_5A9B_FA31_41BC_CEE81D1453F4.html =
In the PaDAWAn project, we are developing an assistive method to support walking in patients with Parkinson's disease. For this purpose, we use an active pelvis orthosis to assist the patients' hip flexion-extension movement. The objective would be to improve the values of some specific gait parameters, and ideally to restore them to the level of healthy walkers' values, thanks to this orthosis. If we manage to show interesting effects, this robot could be used as part of a rehabilitation therapy for patients with Parkinson's disease, or as a daily assistance for those patients.
htmlText_77CBE2EE_6A53_578C_41D6_FA48D57D47D1.html =


htmlText_77DD49A3_6A54_D5B4_4193_77EC5B308DA3.html =
Contact laurence.dricot@uclouvain.be for more information
about statistical and mathematical processing, learning, administrative aspects ...
htmlText_78939DCB_5F86_933C_41D5_9AF42046060A.html =


htmlText_790FF110_5F86_B32C_41D1_9AD522ED82E6.html =


htmlText_7C1C3603_6A33_DE74_41C6_1D47498CCD0D.html =


htmlText_7EB729D7_5F82_B2D4_41B5_BF2F837CF8C0.html =
Lab website
htmlText_81BAFBF7_E75F_3971_41C1_53323FA1783F.html =
Louvain Bionics was initiated by the “Fondation Louvain” and the legacy of Mr Pierre De Merre. It was recognised as an interdisciplinary research centre in 2016. It aims to bring together the expertise of researchers from UCLouvain, whose research is about 1) designing and validating medical devices, 2) improving our understanding of the interaction between the human body and this type of device, or 3) questioning these new techniques from an ethical and legal point of view.
htmlText_85EDA410_E77D_2E8F_41C2_928380068AAB.html =


htmlText_8A0BE752_E75E_EAB3_41DE_6C7DE51C6118.html =
The REA2plan robot (AXINESIS / LOUVAIN BIONICS) can mobilize both arms of the subject individually and record their positions (kinematics). This robotic personal trainer has the ability to measure and interpret the force exchange with the subject (dynamics), which allows smooth and continuous interactions. Our serious game motor skill learning with a speed accuracy trade off (the CIRCUIT) has been implemented in the REAplan. The subjects use the robotic handle to move a cursor as fast and accurately as possible along a complex circuit displayed on the LCD monitor, completing as many laps as possible (speed) in 1 minute while keeping the cursor within the track (accuracy). The measure of the speed accuracy trade off is computed to quantify motor skill learning. High-score & reward are used to motivate the subjects.
htmlText_8A2D69CC_E755_5997_41C9_C407118DBB0A.html =
Data obtained from a typical grip and lift trial with the Active Touch Device. The red curve shows the grip force and the blue curve the loading force exerted by the finger in order to lift the device. In the second part of the video, the red parts of the fingertip are getting deformed and the green parts remain undeformed.
htmlText_8B0513B4_E75D_69F7_4190_096F896EC97E.html =


htmlText_8B722879_E75D_6771_41D1_AD857D984B9E.html =


htmlText_8DE74AF0_E75F_3B8F_41C7_0C19D79EFC73.html =
Lab website
htmlText_8DF16704_E75F_6A97_41E5_0A3FB58EE89F.html =


htmlText_9600C240_E755_2A8F_41CF_2A18253F1C4A.html =
The upper part of this video illustrates the movement made by a subject during an experiment (here during a task involving the right arm). Both arms are shown as well as the different targets on the screen above the subject's hands. The lower plot represents the signals of shoulder muscles activated during movement.
htmlText_C7BE6B3D_D20C_E084_41E1_412E905F99CC.html =
Louvain Bionics
UCLouvain's hub for medical device+human research and innovation
Camille Chatelle - Research Manager
+32 10 47 22 11
camille.chatelle@uclouvain.be
htmlText_D4553F6A_DB98_CE25_41C5_62B229A7681E.html =
From left to right, up to down: Renaud Ronsse, Martin Edwards, Thierry Lejeune, Yannick Bleyenheuft, Christine Detrembleur, Valérie Goffaux, Olivier Collignon, Yves Vandermeeren, Christophe Lazaro, Gilles Vannuscorps, Benoît Macq, Mylène Botbol-Baum, Sylvie Nozaradan, Philippe Lefèvre, Benoît Herman, Laurence Dricot, Bruno Dehez, Frederic Crevecoeur, Valéry Legrain, André Mouraux, John Lee, Michel Verleysen, Aleksandar Jankovski, Philippe de Timary, Gaëtan Stoquart, Mark Hunyadi, Bernard Hanseeuw & Marie Van Reybroeck.
htmlText_D56FB08A_B6F1_5247_41D5_09E83E8CFABB.html =
Louvain Bionics
UCLouvain's hub for medical device+human research and innovation
Camille Chatelle - Research Manager
+32 10 47 22 11
camille.chatelle@uclouvain.be
htmlText_E241F473_608E_91EC_41D3_26AEDF5002B6.html =
(a) stimulation surface of a contact thermal stimulator and time courses of cool and warm stimuli ; (b) example of periodic stimulus (red) and collected intensity ratings (blue); (c) and (d) extraction of statistically-relevant information from periodic stimuli (Mulders, D., et al. PLoS ONE 2020).
htmlText_F095860F_607E_B134_419F_701E6E3FDEB5.html =
Artificial intelligence to automate the treatment planning process in radiation oncology : towards active learning and clinical decision support system.
htmlText_FFF44D3B_638D_935C_41D5_60919E780DD4.html =


## Hotspot ### Tooltip HotspotPanoramaOverlayArea_0607048E_607D_F134_41BE_070DA874AABC.toolTip = EEG Lab : from preparation to testing HotspotPanoramaOverlayArea_0BFF839B_6082_975C_41C5_4E122930E0F1.toolTip = Cognitive Neuropsychology Laboratory HotspotPanoramaOverlayArea_10279316_60FD_9754_41CB_8859C9413915.toolTip = 3D audio from "le Poulpe" HotspotPanoramaOverlayArea_12334B5B_6082_97DC_41D6_FEC33C41960A.toolTip = Audio-visual system "le Poulpe" HotspotPanoramaOverlayArea_1375ADB1_6082_936C_41D0_7EBD88E2B300.toolTip = human vision @uclouvain HotspotPanoramaOverlayArea_15EC0787_60FD_7F34_41CF_5A2E31410D86.toolTip = Auditory localisation experiment HotspotPanoramaOverlayArea_21552AC5_6183_9134_41D6_654AEF8EF6E0.toolTip = DEXTRAIN® tool HotspotPanoramaOverlayArea_243ABEF4_3CED_4971_4185_E9A93BD90F84.toolTip = MRI description HotspotPanoramaOverlayArea_24866F46_3CEC_C891_41C6_EFA1331329E3.toolTip = PiLab neuroimaging HotspotPanoramaOverlayArea_24ADD72C_3CED_3891_4196_B97A8D88AFC2.toolTip = First Alzheimer's blood test HotspotPanoramaOverlayArea_24D3237F_3CEC_DF6F_41B3_B074C854B1E2.toolTip = Overview HotspotPanoramaOverlayArea_24D6637E_3CEC_DF71_41B4_566CC3800FD1.toolTip = Artificial intelligence (Louvain-la-Neuve) HotspotPanoramaOverlayArea_25D2556D_3CED_5893_41B5_F2C10D8A1BB4.toolTip = Presentation OpenHub HotspotPanoramaOverlayArea_2D96F808_6183_B13C_4190_754B9D8002D0.toolTip = Electroencephalography HotspotPanoramaOverlayArea_3C7676EB_6187_9EFC_41CA_EC56D0E91935.toolTip = Infrared laser stimulation HotspotPanoramaOverlayArea_3E193DDA_6183_72DC_41D2_8CE3AB2138BA.toolTip = Psychophysics room HotspotPanoramaOverlayArea_3EEBC9EF_6082_B2F4_41C4_F2F8CD08AB71.toolTip = Multi-sensory psychophysical room (Louvain-la-Neuve) HotspotPanoramaOverlayArea_432E9F71_56D8_026D_41C6_EE09F3398AD5.toolTip = Design and prototyping (Louvain-la-Neuve) HotspotPanoramaOverlayArea_4377DA2F_56D8_0DF5_41CC_102F9D7DC2DC.toolTip = Virtual reality lab - OpenHub (Louvain-la-Neuve) HotspotPanoramaOverlayArea_43AEEF1D_56C8_03D5_41BC_462DC8111A56.toolTip = Neurological diseases (Woluwe) HotspotPanoramaOverlayArea_45777B78_56C8_025B_41D2_CA29B59FA406.toolTip = Psy-naps group (Louvain-la-Neuve) HotspotPanoramaOverlayArea_472FAFA8_5648_02FB_41B0_77F61BE67D99.toolTip = Robotics lab (Louvain-la-Neuve) HotspotPanoramaOverlayArea_4AD12384_6ACF_567C_41B7_B5B71C29F7A0.toolTip = Testing of an upper-limb prosthesis in virtual reality HotspotPanoramaOverlayArea_4BD47A2B_5F8E_B17C_41C5_3C7FD5F821EF.toolTip = Functional assessments HotspotPanoramaOverlayArea_4C930927_607E_9374_41D2_8932DA02B772.toolTip = INSPIRE - Atalante exoskeleton HotspotPanoramaOverlayArea_4CC4B858_5CC6_5008_41D3_9A639566697F.toolTip = ActiveTouch HotspotPanoramaOverlayArea_4D8BEA7D_5F87_91D4_41C9_67404DB6EFBC.toolTip = Kinematics HotspotPanoramaOverlayArea_4E37B128_56D8_1FFB_41C0_BA40965C7C68.toolTip = Biomedical ethics and law (Louvain-la-Neuve) HotspotPanoramaOverlayArea_4E8A44B7_5F83_9154_41B0_1D8781A89750.toolTip = HABIT-ILE HotspotPanoramaOverlayArea_4FC106A1_5648_02ED_41C2_8B0FE0D0B5FA.toolTip = Walking lab & pediatrics rehabilitation (Woluwe) HotspotPanoramaOverlayArea_4FEB274E_56D8_03B7_41D5_69D1EA946597.toolTip = Home (Louvain-la-Neuve) HotspotPanoramaOverlayArea_50B1CB7E_6085_97D4_4190_42EB429BC955.toolTip = NSMK Publications HotspotPanoramaOverlayArea_5123BE6E_671A_B16F_41D2_5AA20932D826.toolTip = Click and drag to look around \ Use the middle mouse wheel to zoom in and out HotspotPanoramaOverlayArea_5DA77014_618F_F154_41D6_6B11B0B2DA8A.toolTip = REA2plan robot HotspotPanoramaOverlayArea_63630CFF_5A9C_ABD1_41BF_D9D1BF3C6DD6.toolTip = Sensorimotor control lab (2) (Woluwe) HotspotPanoramaOverlayArea_696E2270_5A9C_7EEF_41C8_B66D4511D0E5.toolTip = Vision based systems for terrain detection HotspotPanoramaOverlayArea_69F3A3A2_5A9D_9E73_4189_7FBA366E6828.toolTip = prosthesis ELSA (2) HotspotPanoramaOverlayArea_6A6F9D5C_5A9D_AAD7_41BB_A1D52240FC12.toolTip = prosthesis ELSA HotspotPanoramaOverlayArea_6CC3B83D_5A94_EA51_41AA_92EA0D263AF8.toolTip = Kinarm HotspotPanoramaOverlayArea_6FDF6ED8_5A9C_67DF_41D0_A1D8B0A952AC.toolTip = PaDAWAn project HotspotPanoramaOverlayArea_72C3DAA8_6A3D_37B4_41A4_177DF7A8884B.toolTip = Examples of 3D-printed parts HotspotPanoramaOverlayArea_7359F1E5_6A55_F5BC_41D4_4C1502073FB8.toolTip = Examples of prototypes HotspotPanoramaOverlayArea_73DB91C3_6A5F_D5F4_41B1_ED0A619FA988.toolTip = Virtual tour CREDEM platform HotspotPanoramaOverlayArea_76ECD2A2_6A4F_57B4_41C8_63D3936579D0.toolTip = Several techniques HotspotPanoramaOverlayArea_77C2E2ED_6A53_578C_413E_254E67F0F772.toolTip = Devices description HotspotPanoramaOverlayArea_77CF6543_5F87_932C_41B5_57464A867054.toolTip = REAplan robot HotspotPanoramaOverlayArea_77D4C9A2_6A54_D5B4_41D1_A54C82BC4019.toolTip = Contact information HotspotPanoramaOverlayArea_78AEBDCA_5F86_933C_41D5_875C13535AC5.toolTip = VR Box and Block Test HotspotPanoramaOverlayArea_7C0B5603_6A33_DE74_41A0_85A57234472B.toolTip = Other prototyping facilities HotspotPanoramaOverlayArea_7EA129D1_5F82_B32C_41CE_AD327CDD52EA.toolTip = Magnetic Resonance Imaging HotspotPanoramaOverlayArea_80465A8F_9F62_417E_41E0_01C718D2A527.toolTip = Sensorimotor control lab (1) (Woluwe) HotspotPanoramaOverlayArea_81AF2BF1_E75F_3971_41C5_C78F183CDF4E.toolTip = About us HotspotPanoramaOverlayArea_8523A43F_9F62_C19E_41D5_8128ED07F702.toolTip = Neurorehabilitation research group (Woluwe) HotspotPanoramaOverlayArea_85F0D40F_E77D_2E91_4182_BEDADDE9249C.toolTip = Robot with pneumatic artificial muscles HotspotPanoramaOverlayArea_85F9C5F2_9F66_42A6_41DD_60C35CFFC2F1.toolTip = Motor learning / NeuroRehab (Mont-Godinne) HotspotPanoramaOverlayArea_8B0CF3B3_E75D_69F1_41EC_7496D287AC81.toolTip = Overview HotspotPanoramaOverlayArea_8B4C6869_E74F_6691_41C9_CD45084B1AA7.toolTip = EEG room - Cognitive neuroscience (Louvain-la-Neuve) HotspotPanoramaOverlayArea_8B788879_E75D_6771_41CB_7FA7CCEDEBC5.toolTip = Motion analysis Lab HotspotPanoramaOverlayArea_8BBCA835_E74D_26F1_41D0_17AE310EBD58.toolTip = Human neurophysiology (Woluwe) HotspotPanoramaOverlayArea_8DED6AEF_E75F_3B91_417D_2BD9F8651351.toolTip = Transcranial magnetic stimulation HotspotPanoramaOverlayArea_C2650807_6382_9134_41CE_54DA2163783F.toolTip = Magnetic Resonance Imaging room (Woluwe) HotspotPanoramaOverlayArea_D446CF5C_DB98_CE1D_41DB_F9BA172E4771.toolTip = Members HotspotPanoramaOverlayArea_F9086530_6382_936C_41B0_66D13AC97B1A.toolTip = Tau pathology in neurodegenerative diseases HotspotPanoramaOverlayArea_FFF3ED3A_638D_935C_41CA_9CA2AE16B919.toolTip = Mass spectrometry analysis of the Tau protein ## Action ### URL LinkBehaviour_71A3292A_6A53_32B4_41C4_B23375E8ED72.source = https://visite-virtuelle.uclouvain.be/plateforme/CREDEM/EN/ LinkBehaviour_8223F847_9929_E297_41C9_2AF00276F1D7.source = https://uclouvain.be/en/research/louvain-bionics LinkBehaviour_86E15B36_988D_5381_41A4_35BB9DBDC984.source = https://uclouvain.be/en/research/louvain-bionics